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I would like to start by thanking the Honda Foundation and the selection committee for this 

great honor. I would also like to thank the many distinguished guests who have come to this 

ceremony. 

 

 

 

 

 

 

 

 

 

 

 

 

I’m going to talk about the history of deep learning. I’m not going to talk about the most 

recent achievements in this area, and because I’m really a professor, I’m going to focus on 

actually explaining how it works. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 

〈Fig. 1〉 There are two paradigms for artificial intelligence. There is the logic-inspired 

approach where you think of intelligence as basically reasoning, and the essence of 

intelligence is manipulating symbolic expressions using rules of inference. And then there is 

the biologically-inspired approach, which is very different. In the biologically-inspired 

approach you think of the essence of intelligence as learning, learning the strength of 

connections in a neural network, and the main focus is not on reasoning, but on learning and 

perception. 
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Fig. 2 

〈Fig. 2〉 These two views of artificial intelligence go together with very different views of 

what internal representations are like. So in the symbolic approach, people think of internal 

representations as like strings of symbols. They are the kinds of things that a programmer 

can put into computer and they are the kind of representations that can be operated on by 

rules to derive new representations. In the biological approach, the internal representations 

are nothing like language. The idea is that inside your brain there are big patterns of neural 

activity. Language is just the way of getting stuff into the brain and the way of getting stuff 

out of the brain, but inside the brain it is not language at all, it is these large vectors of 

neural activity and these vectors have direct causal effects on other vectors, and the vectors 

are learned from data rather than being put in by a programmer. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 

〈Fig. 3〉 These two approaches lead to two quite different ways of making a computer do 

what you want. There is the approach I call intelligent design where an AI professor decides 

what representations the computer should have and puts them in by hand and figures out 

exactly how you would manipulate these expressions in order to get some task done and you 
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tell the computer in great detail how to do that. That is called programming. 

 

There is a completely different approach where instead of programming the computer, you 

program it once to tell it how to learn and then for each particular task you just show it 

examples and it uses its learning algorithm to figure out how to derive the output from the 

input. So you’ve programmed it with this general-purpose learning procedure, which is 

back-propagation in the things I’m going to talk about, and for any particular task like speech 

recognition or object recognition it uses this general algorithm, but when you apply it to 

different data it learns to solve these different tasks. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 

〈Fig. 4〉 A good example of a task that was very hard to solve with symbolic AI was you give 

the computer an input, which is an image, so all the computer is really seeing is the red, 

green, and blue values of maybe a million pixels and so those numbers are coming into the 

computer, and what you want to come out of the computer given all these pixel intensities is a 

description of what is in the image, a string of words that says what is in the image. So for 

this image, a good string of words would be “a close-up of a child holding a stuffed animal.” 

And that string of words was actually produced by a computer. 
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Fig. 5 

〈Fig. 5〉 The central question for neural networks is can a large neural network that 

contains millions of connections, each of which has a weight that can be adapted, and many 

layers of neurons between the input and the output, it’s a very powerful learning device but 

can it learn to solve difficult problems like converting an image into a string of words that 

describes the image just by starting with random weights and using a simple learning 

algorithm? And for many people that seemed completely ridiculous. They thought there is no 

way you’re going to get a big neural network to solve a difficult problem like that if you don’t 

tell it a lot about how to solve the problem. And we do have to tell it some things about how to 

solve the problem but basically these networks learn for themselves how to solve these 

problems. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 

〈Fig. 6〉 The obvious learning algorithm for a big neural network, which is obvious if you 

know about evolution, and it was obvious to researchers like Turing and Oliver Selfridge, was 

to start with a network with random weights and then to change one of the weights and see if 

it makes the network behave better. So you give the network some examples of inputs and 
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you look to see what outputs it produces, and then you change one weight and you see if it 

works a bit better. 

 

Now, that’s a very inefficient algorithm because you have to feed an example through the 

network, which involves using all the connections, and actually you have to feed maybe 

hundreds of examples through the network, see how well it does, then change one weight and 

now if that improves things you’ve learned how to make one small change to one weight. So 

this algorithm will work, in the end it will produce a network that works well, but it is 

extremely inefficient. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 

〈Fig. 7〉 In about 1960, Rosenblatt introduced a much more efficient learning algorithm 

that works for simple neural nets. So what the learning algorithm learns to do is to decide 

how much weight to put on various features. You have some features that have to be designed 

by a programmer, but now the neural network decides how much weight to put on each 

feature in order to make a decision. 

 

In 1969, Minsky and Papert showed that this kind of neural net is very limited in what it can 

do. It was a relatively efficient learning algorithm, but there were all sorts of things you can’t 

do if you just have one layer of hand-designed features. You need many layers of features and 

Minsky and Papert didn’t prove you couldn’t do things with many layers of features, but since 

nobody knew how to train them it looked like neural networks were dead and we got the first 

neural network winter. 
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Fig. 8 

〈Fig. 8〉  Then in the 1980s, many different groups developed the back-propagation 

algorithm. I was fortunate to work with David Rumelhart who was one of the people who 

thought of the back-propagation algorithm. And it allowed neural networks to learn layers of 

features, so it was a way of adjusting the weights in the neural network so it would learn 

many layers of features, and this created a lot of excitement as Amari-san (Dr. Shun-ichi 

Amari, Honorary Science Advisor of RIKEN Center for Brain Science) pointed out in his 

previous speech. 

 

We showed early on that it could take strings of symbols and learn to convert each symbol 

into a vector so that from the vectors representing the first two symbols in a string you could 

predict the vector representing the third symbol in the string. So that was an example of a 

neural network learning to convert symbolic input into internal vectors. We thought at that 

point we would be able to solve many problems this way, and currently we can solve problems 

this way, but back then it didn’t work very well and we didn’t really know why. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 

〈Fig. 9〉 I am going to explain in a bit more detail what the back-propagation algorithm is 
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and how it works. And first I have to explain what an artificial neuron is. So the neurons in 

the brain are very complicated devices. What we wanted to do was simplify them and focus on 

the problem of how they interact to solve difficult problems. And, of course, when you do that 

it is dangerous, when you simplify something you lose some of the details, but the crucial 

thing is to simplify it in a way that allows you to study it without losing too many details. And 

so that was the hope of artificial neural networks. 

 

Now, to begin with what we did was we used a particular kind of neuron called a sigmoid 

neuron and what it does is it takes inputs coming from other neurons or from senses and on 

each input it has a weight, so the weights are indicated by these dots here, and they adapt to 

make the neuron behave differently and the neuron gives an output. 

And after about 20 years of trying one kind of neuron, we tried a different kind of neuron, this 

didn’t happen until about 2010, and this different kind of neuron worked considerably better. 

And that kind of neuron has, if it gets input that is below its threshold, it gives an output of 

zero, but as soon as it gets above its threshold it gives an output that increases linearly as it 

gets more input. 

 

So what you do with a neuron like this is you take the activity on an input line, you multiply 

it by the weight on the connection, you add all that up, then you put it through this function. 

So if you get a big sum, you’ll get a big output. If you get a small sum, you will probably get an 

output of zero. That’s the basic computing element. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 

〈Fig. 10〉 We then take those elements and we arrange them in a network. The simplest 

kind of network is a feed-forward network. So here we have multiple layers of neurons. These 

are the inputs, so they might be pixel intensities. These are the outputs, so they might be the 

probability with which you think this image belongs to a particular class. You might, for 
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example, be trying to decide whether something is a cat or a dog and this might be cat and 

this might be dog. There are weights on all of the connections and so what happens when you 

put in an image is you get certain activity levels in these neurons that depend on the weights, 

and as you change these weights what you are doing is changing the circumstances in which 

this neuron will be active and that means you are changing what kind of feature detector it is. 

 

If you wanted to recognize a bird, for example, you might want neurons in the first layer that 

recognize straight lines, and neurons in the second layer that recognize straight lines that 

join at a fine angle, and if you see two neurons like that together, that are two straight lines 

joining at a fine angle, that is some evidence for the beak of a bird. If you then see that as well 

as that there are some neurons that represent edges that form a closed circle like an eye, and 

then the right spatial relationship, then that is a good cue for recognizing a bird. 

 

So the idea of these nets is you will learn these connections that will turn these neurons in 

the intermediate layers into feature detectors, the feature detectors will detect more and 

more complicated features as you go through the network, so this might be edges and this 

might be something like a beak, and then when you get enough evidence of these more 

complex features they will activate whole classes. Now, of course, the neural networks we use 

are much deeper and more complicated than that, but that is the basic principle. 

 

And the question is, how do you learn all of these connection strengths? So I told you the very 

simple algorithm. The very simple algorithm is you start off with random weights here, you 

try it on a bunch of examples, you see how well it predicts the right answer, and then you 

change one of the weights.  

 

 

 

 

 

 

 

 

 

 

Fig. 11 

〈Fig. 11〉 So, for example, you might change this weight here and then see if the network 

behaves better or worse. If it behaves better, you keep that change and then you try a whole 
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bunch more examples and you change one more weight. And you have to change each of the 

weights, and you have to change each of the weights many times, so you end up having to put 

billions of examples through the network, and since you only live for about a billion seconds 

that can’t be how people work, there isn’t time. 

 

So what the back-propagation algorithm is, it is a way of figuring out how changing each of 

these connection strengths will improve your answer, but figuring out for all of the connection 

strengths in the network at the same time. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12 

〈Fig. 12〉 Instead of changing a connection strength and measuring the effect, which is like 

an evolutionary approach, what you do is you do a forward pass through the network and 

then having done the forward pass you do a backward pass through the network and that 

sends information backwards telling every weight in the network how the change in that 

weight would change the error. So you’re trying to compute a derivative, which is how fast the 

error changes as you change that weight. And the point of back-propagation is you can 

compute all those derivatives at the same time for every weight in the network. So now if you 

have got a network with a million weights, you’ve got an algorithm that is a million times 

more efficient than the evolutionary algorithm, than the simple mutation algorithm, and that 

makes a huge difference. 
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Fig. 13 

〈Fig. 13〉 So in back-propagation, you would take some input, you would put it through 

these hidden layers with the current values of the weights, that would give you some 

probabilities of the different answers, and you would compare those probabilities with the 

correct answer. For this input it might be cats so this is the correct answer, for some other 

input it might be dogs so that would be the correct answer. Then you take the discrepancy 

between the answer it gives and the answer you would like it to give, and then you send 

signals backwards through the same network using the same weights, and by doing that you 

can compute for every weight at the same time how changing that weight would improve 

things, and then you change every weight a little bit in the direction that would improve the 

performance of the network. And now if you repeatedly do that many times, the network will 

become very good at doing whatever it is you want it to do, if you make the network big 

enough. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14 

〈Fig. 14〉 So once you’ve got the gradient that is computed by back-propagation, that is for 

every weight in the network you have computed how changing that connection strength 
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would improve the performance, you now update the weight in the direction that will improve 

performance and you do that for all of the weights in parallel, but you do it in order to 

increase the performance of the network on some small batch of training samples. 

 

So you don’t have time to put all of the possible training samples through the network. You 

just pick a small random batch of examples, you train the network to be better on that batch, 

which might make it worse on other examples, but now you take another random batch, and a 

very surprising result is that if you keep doing that the network will become very good at all 

of the examples. You might have thought that you’d have to compute the gradient on all the 

examples, that would be the standard optimization method. 

But what people doing neural networks discovered was is that it is much more efficient if you 

have a big training set. Just take a few examples, use those examples to decide how to change 

the weights, then take a few more examples and change the weights again. And if you change 

the weights in a bad direction because you had untypical examples, that will make things 

temporally worse on other examples, but when you get to another batch you will cancel that 

out and change them in the right direction again. 

 

So stochastic gradient descent actually works extremely well and so at that point we thought 

we had a very powerful learning algorithm, and in fact we did, and so we tried it on all sorts 

of things and it worked pretty well but it didn’t work a whole lot better than other learning 

algorithms. There were other learning algorithms that worked just as well, and so that was a 

huge disappointment. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15 

〈Fig. 15〉 And at the time we didn’t really understand that the problem was that this 

technique only really works well when you have big data sets and big networks. Using small 

data sets and small networks, it doesn’t work better than other learning techniques, so it’s 
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something that really comes into its own at scale. And back in the 80s we couldn’t achieve 

that scale. We didn’t have big enough sets of data to train it on, and we didn’t have powerful 

enough computers to train it. 

 

What happened was the people doing neural network research made all these claims that we 

are going to be able to solve really tough problems now, but then we couldn’t solve these 

really tough problems. We could sort of solve them but not really well. The people doing 

symbolic AI, of course said well that’s because you have got this crazy belief that you are 

going to learn everything from scratch. You are going to take a neural network with random 

weights and learn everything and really what you need to do is program knowledge into it. 

The only way you are going to be able to solve difficult problems is by programming in 

knowledge. Neural network researchers like me didn’t believe that but we couldn’t prove it 

was wrong because we couldn’t make it work on really difficult problems. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16 

〈Fig. 16〉 At this point I want to just describe some other really silly theories because you 

can get comfort when people say your theory is silly from looking at other silly theories. So 

one of the silliest theories that was proposed by Wegener in the 1920s was that the continents 

all used to be connected together and then they drifted apart. Now, he had some very good 

evidence for that. 
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Fig. 17 

〈Fig. 17〉 If you look at the coast of South America here, and you look at the coast of Africa, 

and you look at the soil and the rocks, they fit together quite well. Similarly, up here you find 

similar rocks here to here in Norway and Canada. You also find other things. You find that 

the fossils, very old fossils, that you find here are very like the fossils you find there, and the 

fossils you find here are very like the fossils you find there. And there’s no real explanation 

for why you should get one kind of thing here and here and another kind of thing here and 

here, except that these used to be connected and when those animals lived they were living in 

the same place and then they drifted apart. 

 

Wegener had lots of other evidence. He had evidence that in the tropics you have rock 

formations that have big scrapes in them. They are the kind of scrapes that can only be 

caused by boulders being pulled along by a glacier. So he had incontrovertible evidence there 

were glaciers in the tropics. He also had evidence that there were coal deposits in the Arctic. 

This doesn’t make any sense if the earth is stationary. 

The only way to explain this data is that the continents moved apart, but geologists had this 

theory that the earth was rigid and so they completely dismissed his view of continental drift 

and for 40 years geologists treated this as complete nonsense. 
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Fig. 18 

〈Fig. 18〉 Here’s a couple of things the geology establishment said. I took comfort from this 

because when I was a child my father was involved in the debate over continental drift, and 

based on biology he was on the side of continental drift because you couldn’t explain the 

fossils otherwise. And so I saw when I was very young a theory that was dismissed as very 

foolish actually later being proved to be true and I think that probably had an influence on 

me. 

 

So people said things like if you believe Wegener we have to throw away everything we know 

about geology, which turned out to be true. And they said things like we should not allow this 

stuff into the textbooks because it will confuse students. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19 

〈Fig. 19〉 There is someone you probably know called David Attenborough who has made all 

these wonderful series about animals on the planet. When he was a student he was interested 

in continental drift and he was told it was complete nonsense because there was nothing that 

could make continents move. Now, actually people had already proposed the mechanism for 
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moving continents. The mechanism was that there was hot magma and the continents floated 

on the hot magma, and that had already been proposed in the 1930s, but geologists were so 

convinced the earth was rigid, that was the overwhelming view, that they wouldn’t take this 

theory seriously. 

 

Similarly, within AI, people were so convinced that you had to program knowledge in that 

they wouldn’t take seriously the idea that you might actually learn it all. And they had some 

reason for disbelieving that because we hadn’t shown that it worked yet, so once we began to 

show that it worked there was still a lot of resistance.  

 

At the beginning of this century there were many examples of people producing impressive 

scientific results that were just dismissed by the scientific community as nonsense, and I’m 

going to just name three of them. I’ll only do this for one slide. It’s a self-indulgence. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20 

〈Fig. 20〉 This is taken from the continental drift literature. That is what someone said in 

the continental drift literature. 

 

In 2007, with a student I submitted a paper to NIPS on deep learning, one of the first two 

papers submitted to NIPS on deep learning. And it was rejected by the conference and I asked 

the conference why they rejected it and they said another paper on deep learning was 

submitted by Yoshua Bengio and that they couldn’t accept two papers on deep learning in the 

same conference. That would be too many. Now, if you go to that same conference, most of the 

papers are on deep learning. 

 

In 2009, Yoshua Bengio submitted a neural net paper to a machine learning conference, one 

of the main machine learning conferences, and the paper was rejected and a reviewer said it 
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shouldn’t even be refereed because neural networks had no place in a machine learning 

conference. The community was so confident this stuff was nonsense that they didn’t even 

want to review it for their conference. 

 

Even worse, in 2010, Yann LeCun submitted a paper using deep convolutional neural 

networks for doing image segmentation and it beat the state-of-the-art, so it worked better 

than anything that the computer vision researchers had produced, and the paper was 

rejected. And the reason the paper was rejected was because everything was learned and so 

the computer vision community said that if everything is learned, it is not telling us anything 

about computer vision. They had already decided that the solution to computer vision was to 

program in lots of knowledge, and so the only question for computer vision is what knowledge 

you program in. And this work by Yann LeCun, even through it worked better, didn’t tell you 

what knowledge to program in so it shouldn’t be accepted by the conference, even though it 

worked better. They didn’t understand that the whole point of the paper was it learned 

everything, you didn’t need to program knowledge in. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 21 

〈Fig. 21〉 So between about 2005 and 2009, researchers, particularly researchers in Canada 

like myself and Yoshua Bengio, and Yann LeCun who we count as an honorary Canadian 

because he’s French, made several technical advances that enabled back-propagation to work 

better. In particular, we found better ways of initializing the weights. So they start off 

random and then you do some unsupervised learning to initialize them before you do 

back-propagation and that makes the whole system learn much more easily. And the main 

result of that work is that back-propagation now works very well and it works very well if you 

have a lot of labeled data and you have a very fast computer. 
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Fig. 22 

〈Fig. 22〉  Some of the technical tricks that we introduced were to do unsupervised 

pre-training. If you are learning layers of features, you can learn them by having a deep 

network and back-propagating error from the output, but when the weights are initially 

random that’s not the best way to learn. A more effective way to learn initially is to say I’ll 

learn one layer of features at a time and I will try and learn features that allow me to 

reconstruct the input from those features. So, your first layer of features are learned so that 

from the feature activities you can reconstruct the pixel intensities. And then your next layer 

of features are learned so that from the feature activities in the second layer you can 

reconstruct the feature activities in the first layer and so on. And you can learn many layers 

of features that way, and when you’ve initialized the features like that it is then much easier 

to train the network with back-propagation. 

 

We also introduced a technique called dropout where each time you use a neural network you 

randomly remove a random subset of the neurons. It turns out this makes it slower to learn 

but it makes it generalize much better. Basically, it stops the neurons relying on the other 

neurons. The neurons have to become a bit more independent from one another, they have to 

individually find useful features instead of relying on other neurons to correct the errors. 

 

And the last thing I’ve already mentioned, we switched from using sigmoid units, which had 

been used for years, to using rectified linear units, which are those ones that if the input is 

small you get zero output, and then as soon as the input is above the threshold the output is 

proportional to the input. That’s a sufficient nonlinearity. 
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Fig. 23 

〈Fig. 23〉 Once we had those things in place, two students in my lab applied these kinds of 

techniques to acoustic modeling. In an old-fashioned speech recognizer the way it would work 

is you would take the speech wave, you would use Fourier analysis or something like Fourier 

analysis, to figure out how much energy there is at each frequency and you would get 

something like a spectrogram. You would then look at the middle of the spectrogram and ask 

the question which part of which phoneme is the speaker trying to express by this pattern in 

the middle part of the spectrogram? So you have the context of the rest of the spectrogram 

and you are just trying to decide which piece of which phoneme the person is saying. And it 

turned out that we can make neural nets do that a little bit better than the previous 

technology to begin with and then later on much better. 

 

And so to begin with, these students developed a neural network that would get frames of 

coefficients here describing the sound wave, they would then have multiple layers of these 

feature detectors that started of with random weights and turned into interesting feature 

detectors, and then they would have 183 labels for 183 pieces of phonemes that you might be 

expressing. That is called an acoustic model because it goes from the sound wave to 

fragments of phonemes. It is then up to some other model to decide which fragments to 

believe. You try and string them together into something that is plausible English. 
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Fig. 24 

〈Fig. 24〉 And so to begin with, neural nets like this worked better than the alternatives and 

my students took them to many different labs and showed different labs how to use them. 

And they went to IBM, they went to Microsoft, one student also went to Google, and the 

student who went to Google managed to take the acoustic model developed in Toronto and 

incorporate it in Google’s speech recognizer and get a significant improvement. So in 2012, 

the research done at Toronto with just some engineering changes to make it more efficient, 

came out in Google voice recognition, Google voice search, on Android, and it worked 

noticeably better than Siri, and so that convinced all of the big speech teams that they should 

be using neural networks. 

 

And now all of the best speech recognizers use neural networks but they don’t just use them 

for the front-end that converts sound waves into bets about what piece of a phoneme it is, the 

whole system is now just a big neural network. You put sound waves in one end, and out the 

other end you get the transcription, you get the characters of the transcription, and there is 

nothing but neural networks and it is all trained end-to-end. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 25 

〈Fig. 25〉 Then in 2012, at about the same time as the speech recognition came out on 



 20

Android and convinced big companies that this stuff really works in products, two more of my 

students Alex Krizhevsky and Ilya Sutskever entered the ImageNet object-recognition 

competition and this was finally a competition that had a big enough training set so neural 

networks could really work. Up until that point most object-recognition competitions had had 

a small training set and that meant that these learning techniques couldn’t compete with 

hand-programmed techniques. There just wasn’t enough data. But once we got enough data, 

they could do very impressive things. 

 

And in this competition there was a test set that wasn’t public. The people who ran this 

competition had this private test set so you couldn’t cheat by making an algorithm work for 

the test data. And they would run your algorithm on the test data and see how well it worked. 

You would give them your network or your algorithm and they would run it on the test data 

to see how well it worked. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 26 

〈Fig. 26〉 And the results of that competition were that actually the best conventional object 

recognizer was done at the University of Tokyo. It was slightly better than one done at Oxford 

and again slightly better than one done by a collaboration of the French National Research 

Institute and the Xerox Research Centre Europe, and what you notice about the conventional 

techniques is that they are asymptoting at about 25% errors. What Alex and Ilya, with some 

help from me, did was get something that only had 16% errors and that was a dramatic 

improvement. And that really convinced the vision community that these techniques actually 

really did work. And then the vision community, which a couple years earlier had rejected 

Yann’s paper because it was using learning, they behaved like a scientific community ought 

to behave, they said, “Hey, this stuff works better than what we were doing. We are all going 

to change to using this stuff.” Not all of them, and it took a couple years, but in only a couple 

of years the community changed completely and now anybody doing object recognition would 
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always choose to use neural networks, particularly convolutional neural networks. 

 

This was the breakthrough that we got in 2012 getting from 26% to 16%, that was a big 

reduction. Since then, people have developed neural networks much further and there has 

been a big community effort developing them and now they are down to 3%. And humans on 

this dataset get about 5% errors, so on this dataset they are better than humans now. In 

general, they are not better than humans. On specific data sets they are though. So for 

particular problems like identifying skin cancer, they are now as good as the best humans 

and they will soon be better. For interpreting CAT scans, they will soon be better than the 

best humans. Anywhere where there is very specialized data and you have got a lot of it, then 

these convolutional neural networks are going to make huge improvements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 27 

〈Fig. 27〉 Here are some of the examples from the ImageNet competition. So what is 

interesting about the images is that they were taken from the web and they are not the sort of 

typical views of things. This is a picture of a cheetah from rather close-up, perhaps too 

close-up, and the pink is for the answer given by the neural network. In the ImageNet 

competition you are allowed to give five answers and you are counted as correct if one of your 

five answers was the answer that a person gave. What you will notice is its first answer is the 

correct answer, but its other answers are all pretty plausible answers. 

 

Again, here it says it is a bullet train but notice the bullet train is only a small fraction of the 

image. There is a building that is much bigger than the bullet train and there is a person here. 

It has sort of had to learn things like on the whole the thing you should label is the thing in 

the middle of the image and that bullet trains are interesting. Its other alternatives are fairly 

reasonable things like electric locomotive or even passenger car. 
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Here it is very good at discriminating different kinds of mushroom, much better than I am, 

and it gets this one right. Sorry, it gets this one second. It is a morel and it thinks it is a 

stinkhorn. 

 

This is an example of an image from a catalog, and you can see that its first answer is scissors, 

which is not the right answer. You can see why it might think it is scissors because this looks 

a bit like handles of scissors and this looks a bit like the blades of scissors. You could also see 

why it might think it is a frying pan. What is happening is its vision is not that good but the 

errors it makes shows you that it is really sort of understanding visual concepts. So it makes 

very plausible errors. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 28 

〈Fig. 28〉 So once we had shown that neural networks trained with back-propagation, big 

neural networks trained on big data sets, could actually learn to do speech recognition very 

well and could learn to do object recognition, the symbolic AI people responded. Some of them 

changed their minds but a true believer in symbolic AI is someone called Gary Marcus, who 

publishes a lot, and in one of his chapters that he published in 2015 he claimed that this kind 

of learning algorithm might be fine for developing features for doing things like recognizing 

classes, but this kind of algorithm is going to be no good for dealing with language because it 

is not going to be able to deal with novel sentences. 

 

There’s an old argument going back to Chomsky who really didn’t believe in learning, that 

because language is full of novel sentences you can’t use statistical techniques to deal with 

language. This argument is completely wrong but it was very prevalent in the symbolic AI 

community and Gary Marcus still appears to believe it. So the idea was that because you are 

going to have to deal with novel sentences, these feature detectors are not going to be any 

good. 
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Fig. 29 

〈Fig. 29〉 Well, a year before this was published the people at Google and in Yoshua 

Bengio’s lab in Montréal had actually shown that there is a radically new way to do machine 

translation that can deal with novel sentences, and in about 2015 it was about comparable 

with the other methods of doing machine translation. Now the neural net way of doing it is 

much better than the other methods and is what Google Translate uses and that is why 

Google Translate now works a lot better than it used to five years ago. 

 

And the idea is that for each language, the idea originally was, it has got a lot more 

complicated than this now, for each language we will have a recurrent neural network that 

reads words one at a time and converts these words into an internal vector. And then once we 

have read a sentence, we have converted the string of words into a big vector inside the 

network, and that vector is what I call a “thought vector.” It is a vector of neural activities 

that represents the thought expressed by the sentence. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 30 

〈Fig. 30〉 So the encoder would work like this. You put in a word, this will be a symbol. It 
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will convert that symbol into a vector, and that is a big bunch of neural activities. That vector 

would then provide input to other neurons here, and you get a vector of neural activities here 

that represents that the first word of the sentence was this. You then take the second word, 

you convert that into a vector, and now the input here is the information coming from the 

second word plus the information that you’ve already got in the sentence, and so now you will 

have a vector that represents a sentence where you know the first two words. And you keep 

doing this until you get to the end of the sentence and by the time you get to the end of the 

sentence you have got a vector here that represents, I should say only if all the connection 

strengths are right, but once you’ve learned all these connection strengths, and I will explain 

how you do that in a minute, this vector will represent the thought behind the sentence and it 

will represent it for one particular language. If you want to deal with a different language, 

you train a different network to deal with that language. So the English network will know a 

lot about the order of words in English and how adjectives come before nouns. The French 

network might learn something different. So this is the way you convert a sentence in one 

language into a thought. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 31 

〈Fig. 31〉 What you then do is you take the thought and you convert it into a sentence in the 

output language. So you might have a French decoder and what the French decoder would do 

is it would start with a thought and it would say given this thought what do I think the first 

word of the sentence might be? And it will have probabilities for the first word. It might think 

with a probability of 40% the first word is “le” and with a probability of 30% the first word is 

“la” and with a probability of 10% the first word is “chat” and so on. And so this probabilistic 

network says about what the probabilities of the words are. 
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And if you want to produce a translation what you do is you pick one of those words according 

to those probabilities. So if it thinks “le” is very likely you probably are going to pick “le.” And 

so you pick “le” and then you put “le” back in as the input here, it turns “le” into a vector, it 

then uses that vector combined with this thought to say, “Okay, if I’ve got this thought and 

I’ve just said the word ‘le,’ now what else do I need to express?” And that is going to be 

represented here, and then it chooses the rest of the sentence, what it needs to express, and 

now decide what word to produce next. And it decides probabilities for these various words, it 

picks a word according to those probabilities, feeds it back in and at this point it knows the 

first two words of the sentence. So maybe it is “le chat,” and given that it produces a 

representation here that knows that you have already said “le chat” and this is the thought 

you were trying to produce so what should you say next and so on. 

 

And the way you train these two networks is you stick them together and to begin with they 

are random weights so it produces nonsense in French. It produces strings of words that are 

not translations of the English. But for the English sentence you give it, you know what the 

correct French translation is and so you say, let’s suppose that at this point it said there is a 

very low probability of producing the word “chat,” but actually in the translation the correct 

word to produce was “chat.” So you say, “Okay, I’m going to change all these connections and 

all these connections and all these connections so as to increase the probability that at this 

point it will produce the word “chat,” and that is just back-propagation through this network 

to figure out how to change the weights. So you increase the probability of “chat,” but you also 

figure out how you would change the thought vector here to increase the probability of “chat.” 

 

And once you know how you want to change the thought vector, what you can do is you can go 

back to the encoder network and you can say, “Okay, I know how I want this thought to 

change so I can figure out how to change all these weights and all these weights and all these 

weights so as to change the thought so it will produce the right translation in French. And 

you just keep doing that for millions of pairs of English sentences and French sentences and 

if you start off with pure random weights in the network, after you have done this for long 

enough it can now translate. 

 

Now, that system by itself produces not very good translations but not too bad either. It will 

translate. Since then there has been a lot of research on how to make it work better. I’m not 

going to go into that research.  
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Fig. 32 

〈Fig. 32〉 The main point of this demonstration was this is a relatively simple way of 

training a network with back-propagation to translate from one language to another, and the 

network does not need any linguistic knowledge. You just feed words in in one language, you 

tell it to produce words in the other language, you start with random weights, and the 

amount of linguistic knowledge you need to program into the network is zero. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 33 

〈Fig. 33〉 Now I want to go back to the example I showed you at the beginning, of an image 

and a caption for the image, and show you how we can now solve that problem. So we solved it 

by putting together the machine translation system and the ImageNet recognition system. 

 

First you take the image and you put it into the ImageNet recognition system and at the end 

of the system you have bets about the different object categories, but just before the end, the 

last layer before the end, you have a big vector of neural activity that has taken the pixels of 

the image and turned them into information about the kinds of objects that might be in the 

image and you treat that big vector as a percept. And you take that percept and now you take 
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your language decoder and instead of putting in the thought you got from something that 

encoded English into a thought, you put in the percept and you say take this percept and say 

what this percept is in language. To do that you need a training set and Microsoft provided a 

very nice training set where you have images and you have captions. So you have already got 

a system that can recognize the images, you take the last layer of neurons in that system, you 

treat them as input to the language decoder, and you just tell it to say that and it learns the 

weights so it can say what is in the image. And it works. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 34 

〈Fig. 34〉 Neural net machine translation has actually evolved a lot on since 2014 when we 

first got it working with this simple idea of turn a string of words in one language into a 

thought and then express the thought in the other language, and one big factor has been 

attention. As any translator knows, you don’t listen to the whole of the sentence in the first 

language and then say the sentence in the second language without thinking back to the first 

language. So now what happens is as you are producing the translation, you are looking back 

at the words in the first language, or rather their hidden representations, to influence what 

you say and you are deciding which bits of the input sentence you should attend to as you are 

producing the output sentence. That makes things work much better. 

 

And one other thing that makes things work much better is actually doing pre-training. So 

instead of training everything in order to translate, you actually take strings of words in one 

language and what you do is you leave out some of the words and get the network to 

reconstruct the complete sentence, even though you are giving it a sentence with words left 

out. It actually works even better if you leave out little sets of contiguous words, so you are 

leaving a little gap in the sentence. And what the network has to learn to do is fill in the gap 

but without translating it, just in English fill in the gap, and once you have trained it to do 

that then you train it to do machine translation, and by learning to fill in these gaps, it learns 

very good vectors for representing the words. 
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For example, if you give it a sentence that has the word “may” in it in English. When you turn 

“may” into a vector, you don’t know whether it’s the month “May” or it’s the modal “may” as in 

“he may do that.” So what happened originally was the vector that you used for representing 

“may” was a compromise between a vector that represents the month and a vector that 

represents the modal. Fortunately, big high-dimensional vectors can actually be quite close to 

the month and quite close to the modal without being too close to other things so it worked. 

But now what happens is you feed in the words, you get a vector for each word, and then 

these vectors look at the vectors for neighboring words. And maybe in the same sentence a 

nearby word is “June.” So if you’ve got “May” and a nearby word is “June,” that helps you 

disambiguate “May” and think that it is the month. But if a nearby word is “might” or “could,” 

it will disambiguate it and you will think “may” is the modal. And that way of disambiguating 

words has made these language models work much better now. 

 

Now they work really well and in fact they work so well that neural nets can now be trained 

on a big set of language not to do machine translation but just to predict the next word. And 

after you have trained them, you can give them one sentence to start off with and then you 

can get them to predict the next word, and whatever they predict you tell them they were 

correct and you feed that back in and then they predict the next word and you tell them they 

were correct, and these big networks now produce really impressive stories, they produce 

stories with long-term coherence. 

You can use exactly the same technique for producing music and now neural networks can 

produce music that actually sounds like real music. It’s quite difficult to know whether it was 

composed by a neural network or a person. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 35 

〈Fig. 35〉 So I think the lesson of neural net machine translation was that for machine 

translation it’s the problem that ought to be best suited to symbolic AI because the input is a 
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string of symbols, words in one language, and the output is a stream of symbols, words in the 

other language, and the obvious way to try and do machine translation is to manipulate the 

input symbols to produce the output symbols. So you might have thought what you wanted 

was rules for manipulating symbol strings symbol strings and that is how translation used to 

work, but actually that’s not the technique that works best. You want to take the input 

symbols and you want to convert them into great big vectors of neural activity and then use 

interactions among those vectors in order to produce the output symbols. 

So at the input it is symbols, at the output it is symbols, but inside it is all vectors and it is 

vectors having causal effects on other vectors. 

 

Now, I don’t think symbolic AI was a waste of time. People doing symbolic AI had a lot of 

insights into how people do reasoning but they tried to implement those insights on 

conventional computers, which is not the right way to implement them. What we need to do 

now is take the insights of people who did symbolic AI and use those insights to help us 

design better neural networks. But we need the learning algorithms of neural networks to do 

the heavy lifting to actually decide what all the weights should be rather than trying to 

program everything by hand. 

 

So I think it’s fairly conclusive now that if you want to build an intelligent system for 

recognizing speech or recognizing objects or for translation, you ought to do it with great big 

neural networks that start with random weights. They may be structured in various ways 

that depend on insights into how you need to solve the problem, but basically they learn 

everything from the data. 

 

So this is the end of my talk. 
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