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Fractals and The Unity of Knowing and Feeling

Lecture at the Conferring Ceremony on the 17th of November 1994, in Tokyo

Professor Benoit B. Mandelbrot
The Winner of the Honda Prize 1994

Abraham Robinson Professor of Mathematical Sciences, Yale University
IBM Fellow Emiritus, Thomas J. Watson Research Center

Your Excellencies, President of the Honda
Foundation, Mrs. Honda, distinguished guests,
the Honda Prize is an honor I shall treasure
in a very special way, because it rewards a
central aspect of my work. Indeed, I do not
represent here one field and one country: I
am a Frenchman born in Poland whose prize-
winning work was done in the USA. And my
only true intellectual home is the cross-
disciplinary work that you have chosen for
this award. Fractal geometry, which I origi-
nated, has affected several established fields,
but I have never thought that it should be-
come one itself. Thus, I spent all my life be-
tween well-organized entities, and it is legiti-
mate to guess that your kind attention was
drawn to the fact that my interests are
tightly connected, and some concern ecology
and others concern technology. Actually, my
professional interests range even more
 widely, from art to mathematics, via a long
roundabout route. (This leaves little room-
and little need-for hobbies ! )

Fractal geometry means many different
things to different people., But one of its
meanings can be viewed as standing above
the other: fractal geometry is a recent
mathematical and graphic implementation of
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some very old and basic insights of our cul-
ture, and perhaps even of all cultures of ma-
nkind. Let us start with a problem that is
implicitly set up in the Bible. In the King
James Version, the first lines of Genesis in-
form us that:

"In the beginning God created the heaven
and the earth.

And the earth was without form...

And God said, Let there be light: and
there was light. ..

And God made the firmament...and it
was so...

And God said, Let...the dry land appear:
and it was so.”

The existence of light eventually begat
optics; the existence of a firmament begat
astronomy; the existence of land begat geol-
ogy, and other sciences arose in the same
vein from many of the later lines of Genesis.

Yet, most aspects of the heaven and the
earth were never made orderly. They re-
mained without form: tohu va vohu in the
original Hebrew.

The over-reaching goal of my scientific
life can now be stated: I have spent it looking
for elements of order in tohu va vohu. In due
time, those elements became organized in a



discipline I called fractal geometry.

From the sublime to the merely remark-
able, take the painter Eugene Delacroix (1798-
1853), and consider these words he wrote in
the Revue Britannique in 1850.

“Swedenborg claims, in his theory of na-
ture, ...that the lungs are composed of a
number of little lungs, the liver of little livers,
the spleen of little spleens, etc. Without being
such a grand observer, I have noticed this
truth for a long time. I have often said that
the branches of a tree are themselves little
trees; fragments of rocks are similar to
masses of rocks, particles of earth to enor-
mous piles of earth. I am persuaded that one
would find a quantity of such analogies. A
feather is composed of a million feathers.”

Let us now continue with a few words by
Edward Whymper (1840-1910), the first ex-
plorer to climb the Matterhorn and the
author of the book Scrambles Amongst the
Alps 1860-1869.

“It is worthy of remark that ...
ments of ... rock ...

frag-
often present the char-
acteristic forms of cliffs from which they
have been broken ... Why should it not be so
if the mountain’s mass is more or less homo-
geneous? The same causes which produce the
small forms fashion the large ones; the same
influences are at work the same frost and
rain give shape to the mass as well as to its
parts.”

These quotes by Delacroix and Whymper
introduce a second basic theme, that of self-
‘similarity.

Fractal geometry is a branch of learning,
more precisely, of knowing and feeling, that I
conceived and built around the above two in-
tertwined threads of thought: disorder in na-
ture and self-similarity.

In its fully formalized form, fractal ge-
ometry is an enterprise in mathematics whose
primary purpose is to help physics, geophys-
ics and other sciences.

But in the process of reaching this goal,
fractal geometry has the very distinctive fea-
ture of putting enormous reliance upon the
eye.

Human babies - contrary to kittens - are
born with open eyes, but they must learn to
see . Much of frome

learning comes
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experience and requires no theory.

But in many cases, theory can be of
great help, or at least of great influence, wit-
ness the following words by Paul Cézanne
(1839-1906) in a letter to E.Bernard, April 15,
1904,

“Treat nature according to the cylinder,
the sphere and the cone, with everything put
in proper perspective, so that each side of an
object or a plane is directed toward a central
point”

It happens that I admire most paintings
by Cezanne, but not the preceding statement.
More specifically, I endorse unhesitatingly its
general thrust, that one cannot see without a
theory, hence different theories lead to differ-
ent forms of art. But Cezanne’s work has to
me a disagreeable ring of old technology, My
disagreement with his words was stated
forcibly in the following lines, which open my
book, The Fractal Geometry of Nature.

“Why is geometry often described as

“cold” and “dry?” One reason lies in its in-
ability to describe the shape of a cloud, a
mountain, a coastline, or a tree.
Clouds are not spheres, mountains are not
cones, coastlines are not circles, and bark is
not smooth, nor does lightning travel in a
straight line.”

“More generally, I claim that many pat-
terns of Nature are so irregular and frag-
mented, that, compared with Euclid (an old
English term I use to denote all of standard
geometry) Nature exhibits not simply a
higher degree but an altogether different level
of complexity. The number of distinct scales
of length of natural patterns is for all practi-
cal purposes infinite.” “The existence of
these patterns challenges us to study those
forms that Kuclid leaves aside as being
“formless,” to investigate the morphology of
the “amorphous.”..... 7

“Responding to this challenge, I conceived
and developed a new geometry of nature and
implemented its use in a number of diverse
fields. It describes many of the irregular and
fragmented patterns around us, and leads to
fullfledged theories, by identifying a family of
shapes I call fractals.”

My own experience, confirmed by many

stories that I heard, suggests that



acquaintance with fractals makes humans see
the world differently. This can happen at
several different levels. When a recent phys-
ics award cited me for having “changed our
view of nature,” it referred to the view of na-
ture as expressed in physicists’ writings. But
friends who are photographers tell me that
fractals not only changed their view of na-
ture, not in an allegorical sense, but in the
most literal sense one could imagine.

As we shall see in a moment, fractal ge-
ometry also has, in addition to its realistic
face, a face that is thoroughly non-represent-
ational. Fractals are a family of geometric
shapes, and I happen to believe that, in order
to understand geometric shapes, one must see
them. It has very often been forgotten that
geometry simply must have a visual compo-
nent, and I believe that in many contexts this
omission proved to be very harmful.

Fractal geometry is conveniently viewed
as a language, and it has proven its value by
its uses. Its uses in art and pure mathemat-
ics, being without “practical” application, can
be said to be poetic. Its uses in various areas
of the study of materials and of other areas
of engineering are examples of practical
prose. Its uses in physical theory, especially
in conjunction with the basic eqgations of
mathematical physics,
high prose.

Let me remind you of a marvellous text

combine poetry and

that Galileo Galilei wrote at the dawn of sci-
ence, in his book, 1l Saggiatore (1623) :

“Philosophy is written in this great book
- 1 am speaking of the Universe - which is
constantly offered for our contemplation, but
which cannot be read until we have learned
its language and have become familiar with
the characters in which it is written. It is
written in the language of mathematics, and
its characters are triangles, circles and other
geometric forms, without which it is humanly
impossible to understand a single word of it;
without which one wanders in vain across a
dark labyrinth.”

We all know that mechanics and calculus,
therefore all of quantitative science, were
built on these characters, and we all know
that these characters, belong to FEuclidean
geometry. In addition, we all agree with
Galileo that this geometry is necessary to de-
scribe the world around us, beginning with
the motion of planets and the fall of stones
on Earth,

But is it sufficient? Figure 1 seems to
represent a real mountain, but it is neither a
photograph, nor a painting. It is a mathe-
matical forgery, a computer forgery; it 1is
completely based upon a mathematical for-
mula from fractal geometry. The same is
true of the forgery of a cloud shown in
Figure 2.

Figure 1. A fractal landscape that never was (R.F,Voss).

(23)



Figure 2. A cloud formation that never was
(S. Lovejoy & B, B. Madelbrot)

An amusing and important feature of Figures
1 and 2 is that both use new adaptations of
formulae that had been known in pure math
ematics. Thanks to fractal geometry, diverse
mathematical objects, which used to be
viewed as being so far from physics as to be
“pathological”, have turned out to be the
proper tools for studying nature.

One of the successes of fractal modelling
was unexpected and amusing. A fractal gen-
erator is used in Star Trek Two, the Wrath
of Khan. The many people who saw this film
witnessed a planet appear in the Genesis se-
quence, but few noticed without prodding that
this planet is fractal. Prodded again, one
sees peculiar characteristics (superhighways
and square fields) that are due to a shortcut
taken by Lucasfilm to make it possible to
compute these fractals quickly enough. But
we need not dwell on flaws. Far more inter-
esting is the fact that the films that include
fractals create a bridge between two activities
that are not expected to ever meet, mathe-
matics and physics on the one hand, and
popular art on the other.

More generally, an aspect of fractals that
I found very surprising at the beginning, and
that continues to be a source of marvel, is
that people respond to fractals in a deep,
emotional fashion. They either like them or
dislike them, and either emotion is completely
at variance with the boredom that most
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people feel towards classical geometry. .

Let me stop here to state that 1 will
never say anything bad about Euclid’s geom-
etry. I love it and it has been an important
part of my life as a child and as a student;
in fact the main reason why I survived aca-
demically despite chaotic schooling was that I
could always use geometric intuition to cover
my lack of skill as a manipulator of formul-
ae. Fractal shapes are exactly as geometric
as those of Euclid, yet they evoke emotions
which geometry is not expected or supposed
to evoke.

Let us now move from the geometry of
the world around us to the proper geometry
of deterministic chaos: it happents to be the
same as the proper geometry of mountains
and clouds. The fact that we need only new
geometry is really quite marvellous, because
several might have been needed, in addition
to that of Euclid. But it is not so. Fractal
geometry plays both roles. Not only is it the
proper language to describe the shape of
mountains and of clouds, but it is also the
proper language for all the geometric aspects
of chaos.

To give an example, Figure 3 is an enor-
mously magnified fragment from the set to
which my name has been attached. Here, a

Figure 3. A very small fragment of the
Mandelbrot Set (R.F.Voss).



fragment of the Mandelbrot Set has been
magnified In a ratio equal to Avogadro’s
number, which is 24 decimal digits long. Why
choose this particular number? Because it's a
nice, very large number, and a huge magnifi-
cation provided a good opportunity for test-
ing the quadruple precision arithmetic on the
I.B.M. computers that was being introduced
some few years ago. (They passed the test.
It’s very amusing to be able to justify plan
fun and pure science on the basis of down-to-
earth considerations. ) If the whole Mandelbrot
Set had been drawn on the same scale, the
end of it would be somewhere near the star
Sirius.

The shape of the black “bug” near the
centre 1s very nearly the same as that of the
white centre of Figure 12, which shows the
shape of the whole Mandelbrot Set. Finding
nearly identical bugs all over the Set is a to-
ken of geometric orderliness. On the other
hand, the surrounding pattern depends very
much upon the point on which the zoom has
focused; its variability is a token of variety,
and even chaos.

The shape shown in Figure 4 is a variant
of the Mandelbrot Set that corresponds to a
slightly different formula. This shape is re-
produced here simply to comment on a
torally amazing and extraordinarily satisfy-
ing aspect of fractal geometry. Fractals are
perceived by many people as being beautiful.
But these shapes were initially developed for

Figure 4. A small fragment of a
modified Mandelbrot Set
(B. B. Madelbrot)

the purpose of science, for the purpose of un-
derstanding how the world is put together
both staically (in terms of mountains) and
dynamically (in terms of chaos, strange
attractors, etc.). In other words, the shapes
shown in Figures 1 to 4 were not intended to
be beautiful. This being beautiful unavoidably
raises many questions. The most important
question is simply why? The fact must tell us
something about our system of visual percep-
tion.

I wanted to start with Figures 1 to 4 be-
cause their structure is so rich... but I went
overboard. Their structure is in fact so rich
that these figures cannot be used to explain
the main feature of all fractals. The underly-
ing basic principle shows far more clearly on
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Figure 5. Cauliflower Romanesco(R. Ishikawa).

Figure 5, which -for a change- reproduces a
real photograph of a real object. You may
recognize a variety of cauliflower called Ro-
manesco. Each bud looks absolutely like the
whole head, each bud subdivides into smaller
buds, and so on. I am told that the same
structure repeats over the five levels of sepa-
ration you can do by hand and see by the
naked eye, and then over many more levels
you can see only with a magnifying glass or
microscope.

Until recently, scientists did not pay
much attention to this " hierarchical” property.
Their first reaction to this kind of botanical
shape was not to focus on buds within buds,
but on the spirals formed by the buds. This
interest led to extensive knowledge about the
relation between the golden mean (and the
Fibonacci series), and the way plants spiral.



But the hierarchical structure of buds is
more important for us here, because it em-
bodies the essential idea of fractal.

Before we continue and tackle what a
fractal is, let us ponder what a fractalis not.
Take a geometric shape and examine it in in-
creasing detail. That is, take smaller and
smaller portions and enlarge each to some
prescribed overall size. If our shape belongs
to standard geometry, it is well known that
the enlargements become increasingly smooth.
In sharp contrast, the shapes I have been
showing fail to be locally linear. In fact, they
deserve being called “geometrically chaotic,”
unless proven otherwise. In an altogether dif-
ferent neighborhood of the great City of
Science, a kind of geometric chaos became
known during the half century from 1875 to
1925. Mathematicians who were attempting to
flee from concern with nature became aware
of the fact that a geometric shape’'s rough-
ness need not vanish as the examination be-
comes more searching. It is conceivable that
its roughness should either remain constant,
or vary endlessly, up and down. The hold of
standard geometry was so powerful, however,
that the resulting shapes were not recognized
as models of nature. Quite the contrary, they
were labelled “monstrous” and “pathological ”
After discovering these sets, mathematics
proceeded to increasingly greater generality.

Science must constanly navigate between
two dangers: lack and excess of generality.
Between the two extremes, it must always
find the proper level that is necessary to do
things right. Between the extremes of the ex-
cessive geometric order of Euclid, and of the
true geometric chaos of the most general
mathematics, can there be a middle ground
of “organized” or “orderly” geometric chaos?
To provide such a middle ground is the ambi-
tion of fractal geometry.

The reason why fractals are far more
special than the most general shapes of
mathematics is that they are characterized by
transformations called “symmetries”, which
are invariances under dilations and/or cont-
ractions. Broadly speaking, mathematical
and natural fractals are shapes whose rough-
ness and fragmentation neither tend to van-
ish, nor fluctuate up and down, but remain
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essentially unchanged as one zooms in con-
tinually and examination is refind. Hence, the
structure of every piece holds the key to the
whole structure.

The preceding statement is made precise
and illustrated by Figure 6, which represents
a shape that is enormously simpler than
Figures 1 to 5. As a joke, I called it the
Sierpinski gasket, and the joke has stuck.

The four small diagrams show the point
of departure of the construction, then its

A LSS

Figure 6. The Sierpinski gasket. Early and
late stages of construction,

first three stages, while the large diagram
shows an advanced stage. The basic step of
the construction is to divide a given (black)
triangle into four sub-triangles, and then
erase (whiten) the middle fourth. This step is
first performed with a wholly black filled-in
triangle of side 1, then with three black trian-
gles of side 1,72. This process continues, fol-
lowing a pattern called recursive deletion,
which 1s very widely used to construct
fractals.

By examining the large advanced stage
picture, it is obvious that each of the three
reduced gaskets is simply superposed on one
third of the overall shape. For this reason,
the fractal gasket is said to have property of
exact or linear self-similarity.

I used to think that the word “self-
similarity” was used for the first time in a
paper of mine in 1964. But, it has since come



to my attention that the philosopher Emerson
(1803-1882) used it once. Now, why was this

(a)

the old sense of the word. The two are very
intimately linked.

S

D=2

Figure 7. Mandelbrot's Peano curve. (B.B. Madelbrot). It is shown because it is
attractive, but it is not referred to in this introduction,

word not used, although the idea itself is per-
fectly obvious and very old ? The reason is
that finding that a shape is being self-similar
had no importance until my work. For exam-
ple, Sierpinski had investigated “his” shape
for a long forgotten purpose for which the
only virtue of self-similarity was that it re-
sulted in a shape requiring few lines to
describe.

Why did self-similarity become important
? Because Figures 1 to 5 are self-similar, not-
to be sure-in an exact, but a statistical mean-
ing of the word.

One reason why fractal geometry has de-
veloped so widely, and I spent so much time
in efforts to build it as a discipline, resides in
empirical discoveries (each established by a
separate investigation) that the relief of the
earth 1s self-similar, and that the same is
true if many other shapes around us.

The Sierpinski gasket, and other struc-
tures of the same ilk, are important because
you must begin the study of fractal geometry
with them, but keep in mind that the real fun
begins beyond them.

The fun begins after one has added an
element of unpredictability, which may be due
to either randomness (as in Figures 1, 2 and
5), or to non-linearity (as in Figures 3 and
4). Non-linearity is the key word of the new
meaning of chaos, namely of deterministic
chaos, and randomness is the key to chaos in

27)

Figure 8 combines a sequence of com-
pletely artificial random landscapes. Each
part of this picture consists of enlarging a
small black rectangle in the preceding picture,
and in filling in additional detail. This proce-
dure is called recursive addition. Each step
followed by “zooming-in” yields a landscape
that is of course different from the preceding
landscape. It is more detailed, yet at the
same time is qualitatively the same. The suc-
cessive enlargements might have been differ-
ent parts of the same coastline examined on
the same scale, but in fact they are neighbor-
hoods of one single point examined very dif-
ferent scales. Clearly, these successive en-
largements of a coastline completely fail to
become locally smooth !

At this point, let me recall a story about
the great difficulties the ancient Greeks used
to experience in defining “bigness” in the
context of geography.

Much evidence suggested Sardinia was
less big than Sicily, but ancient
claimed that Sardinia was the bigger of the
two: it took longer to circumnavigate, be-
cause its coastline was longer. But let us ex-
amine Figure 9, and ponder the notion of the
length of a coastline ? When the ship used to
circumnavigate is large, the captain will re-

sailors

port a rather small length. A much smaller
ship would come closer to the shore, and
navigate along a longer curve. A man
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Figure 8. Zoom onto a fractal landscape that never was (R.F.Voss).

Figure 9, A fractal coastline that never
was (B. B, Madelbrot)

walking along the coastline will measure an
even longer length. So what about the “real
length of the coast of Sardinia?” The ques-
tion seems both elementary and silly, but it
turns out to have an unexpected answer. The
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answer is, “there ia no single answer; it all
depends.” The length of a coastline depends
on whether you circumnavigate in a large or
a small ship, or walk along it, or use dividers
of some other instrument to measure the
coastline on a map.

The preceding example makes us appreci-
ate the extraordinary power of the mental
structure that schools impose by teaching
Euclid. Many people who thought they had
never understood geomerty learned enough to
expect every curve to have a length. For the
curves in which I am interested, this turns
out to have been the wrong thing to remem-
ber from school, because the theoretical
length is infinite, and the practical length de-
pends on the method of measurement. Its in-
crease is faster where the coastline is rough,
making it necessary to study the notion of
roughness.

The task of measuring roughness objec-
tively has turned out to be extraordinarily
difficult. People whose work demands it, like
metallurgists, ask their friends in statistics



for a number one could measure and call ro-
ughness. But perform the following experime-
nt. Take different samples of steel which the
Bureau of Standards guarantees to be pieces
of one block of metal, as homogenous as
man can make it. If you take several pieces
and you break them all and measure the
roughness of the fractures according to the
books on statistics, you will get values that
are in complete in disagreement

On the other hand, I shall argue that
roughness happens to be measured consis-
tently by a quantity called fractal dimension,
which happens in general to be a fraction,
and which one can measure very accurately.
Studying many samples from the same block
of metal, we found the same dimension for
every sample.

The reason for the term
that the same approach can also be applied
to points, intervals, full squares and full
cubes, and in those cases yields the familiar
values 0, 1, 2 and 3. Applied to fractals how-
ever, measurements usually yield values that
are not integers.

I3 2 s ” M
dimension” is

Fractal geometry has proved an increas-
ingly valuable tool in the discovery and study
of new aspects of nature. Diffusion Limited
Aggregates, DLA, are a form of random
growth. A DLA cluster lurks in the centre of
Figure 10. It is a tree-like shape of baffling
complexity one can use to model how ash
forms, how water seeps through rock, how
cracks spread in a solid and how lightning
discharges.

To see how the growth proceeds, take a
very large chess board and put a queen,
which is not allowed to move, in the central
square. Pawns, which are allowed to move in
either of the four directions on the board,
are released from a random starting point at
the edge of the board, and are instructed to
perform a random walk, or drunkard’s walk.
The direction of each step is chosen from
four equal probabilities. When a pawn
reaches a square next to that of the original
queen, it transforms itself into a new queen
and cannot move any further. Eventually, one
has a branched, rather spidery-looking collec-
tion of queens.

Quite unexpectedly,

massive computer
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Figure 10. A cluster of diffusion limited
aggregation, surrounded by its
equipotential curves(C. J. G. Evertsz
and B.B.Mandelbrot).

Quadratic Julia sets for the map
Z.Z+C. Each boundary of zebra
stripe corresponds to a different
value of C (B. B. Mandelbrot),

Figure 11,

simulations have shown that DLA clusters
are fractal. They are nearly self-similar, that
1s, small portions are very much like reduced
versions of large portions. But clusters devi-
ate from randomized linear self-similarity,
something that will pose interesting chal-
lenges for the future.

One reason for the importance of DLA is
that it concerns the interface between the
smooth and the fractal. Moving away again
from randomness to deterministic chaos, and



from physical to imaginary objects, let us
consider Julia sets. What will remain un-
changed is that we shall deal with spiky sets
surrounded by smooth lines.

An example of a “filled-in Julia set” is
shown in Figure 11. This is generated by it-
eration of the simple function Z. Z+C.
Iteration means that the result of each
evaluation provides the starting point to the
next evaluation; because Z and C may be
complex numbers, negative values can occur.
For starting points outside the black shape,
iteration will go to infinity; if you start in-
side, you fail to iterate to infinity. The
boundary between black and white is called
the Julia curve. It is approximately self-simi-
lar. Each chunk is not quite identical to a
bigger chunk, because of non-linear deforma-
tion. But it is astonishing that iteration
should create any form of self-similarity,
quite spontaneously.

As in the investigation of fractal moun-
tains, the computer was essential to the
study of iteration. The bulk of fractal
geomerty is concerned with shapes of great
apparent complication and by hand they
could never be drawn. More precisely, this
picture could have been computed by a hun-
dred people working for years; but nobody
would have started such an enormous calcu-
lation, without first feeling that it was worth
performing.

Not only had I access to a computer in
1979, but I was familiar with its capabilities.
Therefore, 1 felt these calculations were
worth trying, even though I certainly did not
know what was going to come out. A fishing
expedition led to a primitive form of Figure
12. The Julia sets of the map Z.Z+C can
take all kinds of shapes, and a small change
in C can change the Julia set very greatly. I
set out to classify all the possible shapes and
came up with a new shape, that has come to
be known as the Mandelbrot Set, M. Figure
3 shows a tiny portion of Figure 12.

As you zoom towards a portion of the
boundary of M, part of that you see is sim-
ply a repetition of something you have al-
ready seen. This element of repetition is es-
sential to beauty. But beauty also requires
an element of change and that is also very
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Figure 12. The Mandelbrot Set, surrounded
" by its equipotential curves.

As you come closer and
closer, what you see becomes more and more

clearly present.

complicated. The overall shape is the same,
but the hair structure becomes more and
more intense. This feature is not something
we put in on purpose. Insofar as mathemat-
ics 1s not invented but discovered. It is some-
thing that has been there forever and it
shows that the mathematics of Z.Z+C is as-
tonishingly complicated, by contrast with the
simplicity of the formula. We find that the M
set, when examined closer and closer and
closer, exhibits the coexistence of the relent-
less repetition of the same theme combined
with variety that boggles the imagination. 1
first saw the Mandelbrot Set on a black and
white screen of very low graphic quality, and
the picture looked dirty. But when we
zoomed on what seemed like dirt we found
instead an extraordinary little copy of the
whole.

In Figure 12, the Mandelbrot Set is the
white “bug” in the middle. It is very rough-
edged, but is surrounded by a collection of
zebra stripes whose edges become increasingly
smooth as one goes away from M. These ze-
bra stripe edges happen to be Laplacian
equipotential curves - just like in Figure 10.
But they are far easier to obtain.

Of course, the black and white figures in
this introduction are far from the beautiful
color ones which everyone must have seen.

The structure itself is independent of the



color rendering. However, different renderings
emphasize very different structural aspects.
This use of color is similar to that employed
in relief maps, where altitude bands are sig-
nified by different colors. Perhaps surpris-
ingly, the black and white of Bill Hirst’s pho-
tographs serves to clarify their structual con-
tent.

Let me now bring together the separate
strings of this presentation. How did fractals
come to play their role of “extracting order
of chaos ?” The key resides in the following
very surprising discovery I made thanks to
computer graphics.

The algorithms that generate fractals are
typically so extraordinarily short, as to look
positively dumb. This means they must be
called “simple.” Their fractal outputs, to the
contrary, often appear to involve structures
of great richness. A priori, one would have
expected that the construction of complex
shapes would necessitate complex rules.

What is the special feature that makes
fractal geomerty perform in such an unusual
manner ? The answer is very simple. The al-
gorithms are recursive, and the computer
code written to implement them involves “loo-
ps.” That is, the basic instructions are sim-
ple, and their effects can be followed easily.

But let these simple instructions be per-
formed repeatedly and - unless one deals
with the simple old fractals, such as the
Sierpinski gasket the process of iteration ef-
fectively builds up an increasingly compli-
cated transform, whose effects the mind can
follow less and less easily. Eventually, one
reaches something that is “qualitatively” dif-
ferent from the original building block. One
can say that the situation is a fulfilment of
what in general is nothing but a dream: the
hope of describing and explaining “chaotic”
nature as the cumulation of many simple
steps.

Having surveyed some features of fractal
geometry, I shall conclude by bringing back
some theme of my introduction. Several parts
of my work have been rewarded in the past,
either singly or in various combinations, but
I feel that this Honda Prize is directed very
specifically at a broad cross-disciplinary
theme that underlies all that T have done in

(31)

my professional life. Once again, I shall
treasure it in a very special way, and wish to
express my deep gratitude to the persons and
the institution that have brought it about.

Thank you very much.

The Fractal Geometry of Nature by B.B.
Mandelbrot, W. H. Freeman, 1982 was the first
comprehensive book on the subject, and re-
mains a basic reference book.






