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THE THIRD PILLAR: 
The Computational Revolution of Science and Engineering 

 
J. Tinsley Oden 

 
 
 
 
 
 
 
 
 
 
 
 
 
    I am truly humbled by this great honor bestowed on me by the Honda Foundation. This 
extraordinary ceremony, the participation of such distinguished guests, and the honor of being 
included as part of the great tradition of the Honda Prize represent events marking the peak 
of one’s professional life. This is truly the high point of my career as a computational scientist, 
an engineer, a mathematician, and a researcher. I give my sincere thanks to the Honda 
Foundation, Mr. Hiroto Ishida, President of the Honda Foundation and to the selection 
committee for kindly selecting me and my work for this award. I convey my sincere 
appreciation to Mr. Fumihiko Ike, Chairman and Representative of the Honda Motor 
Company, Ltd. I also thank other distinguished guests who took the time to attend this 
ceremony and share with me this special event. I am particularly grateful to Mr. Satoshi 
Matsuzawa, Managing Director of the Honda Foundation, whose kindness and professional 
assistance made this occasion all the more enjoyable. And I thank my dear friends here who 
have interacted with me professionally and socially over the years who are part of my most 
respected supporters. Thank you all for attending this ceremony.  
 
    I also embrace the ecotechnology concept of the Honda Foundation, and hope to lay down 
arguments that computational mechanics—and more broadly, computational science—has 
had, and will continue to have, a profound impact on all of science and technology, and will 
emerge as an indispensable factor in preserving our precious ecological systems and 
advancing ecotechnologies in the future.  
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    I am indebted to many individuals who supported me and my work on the long path that 
brought me to this point in my life: my family, my wife Barbara, son Walker, and daughter 
Lee, who patiently and lovingly sacrificed time with me so I could do my work; to my parents, 
who encouraged me as a child and an adult to devote myself to scholarship and research; and 
to many students, postdocs, and professional colleagues, some of whom are here at this 
ceremony, who collaborated and supported much of my work over the years. 
 
■ Table of Contents 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1 

〈Fig 1〉 This presentation is divided into the nine topics indicated here, beginning with 
the introductory comments I make now. 
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■ Foundations of Science and Engineering 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2 

〈Fig 2〉 I begin this lecture with a few comments on ancient subjects of concern to all of us 
here: science, the scientific method, and its application to problems affecting mankind. A 
simple definition of science is this: the activity concerned with the systematic acquisition of 
knowledge. The English word is derived from scientia, which is Latin for “knowledge.” 
According to the Cambridge Dictionary, it is “the enterprise that builds and organizes 
knowledge in the form of testable explanations and predictions about the universe.” It is 
designed to reduce or eliminate ignorance by acquiring and understanding information and 
involves the mental comprehension of perceived truth or fact through cognition. Engineering 
is the systematic application of scientific and practical knowledge for the benefit or needs of 
mankind.  
    Few doubt the importance of scientific discoveries and the enormous advances they have 
made possible in technology over the last millennium in improving the welfare, safety, 
longevity, and richness of life of the human species. With advances in science, comes 
understanding of the universe in which we live, the forces and laws that govern it, and 
ultimately the ability to control those forces and direct them in a way to benefit humankind. 
    I believe that to dedicate one’s time and energy to science, that is, to acquire knowledge, 
and more importantly to apply it, is one of the most honorable activities in which one can 
engage, but, it is also an activity that is enormously challenging, and, at the same time, 
remarkably exhilarating. 
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■ An Ancient Question and Debate 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3 

〈Fig 3〉 The question of how knowledge is acquired has been a subject of debate among 
philosophers of science for almost 3,000 years. We find, from the writings of Plato on Socrates, 
the great philosopher who lived between 469-399 BC, that Socrates believed that knowledge 
lies in the immortal soul. Not trusting the human senses, he believed that knowledge occurs 
by recollection or divine insight, and Plato, his student, aggressively perpetuated that 
thinking. But Plato’s student, Aristotle, who lived between 384–322 BC, had a more appealing 
answer: knowledge is acquired by reasoning and demonstration—a precursor to the idea that 
physical observation and inductive hypothesis create knowledge. In the two millennia between 
500 BC and the 15th century, we had the likes of Archimedes, da Vinci, and others. Sir 
Francis Bacon, David Hume, Galileo, Newton, and others followed in the 16th-18th centuries, 
and then, in the 20th century, there was Dirac, Eddington, Bohr, Einstein, Maxwell, 
Boltzmann, and many more.  
    Sir Francis Bacon, who is credited with influencing the dawn of the industrial age, put forth 
the idea that everything is learned by induction and organized observations. This notion was 
addressed by the British philosopher David Hume, who founded the philosophy of skepticism, 
based on the proposition that induction cannot lead to knowledge. Knowledge, according to 
Hume, can only be obtained through observation and experiment. By induction, we mean the 
development of hypotheses, generally theories, based on interpretations of causes of 
observations of physical events, and, then extrapolating from those hypotheses to forecast 
future events, or events in the past.  
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    Ultimately, the great scientists of the 19th and 20th centuries, ignoring or oblivious to the 
pessimism of Hume, continued to develop inductive theories that changed the world. But the 
philosophical foundations were still unsettled until the work of Karl Popper, the 20th century 
philosopher, who put forth his principle of falsification, to wit: an inductive hypothesis, a 
theory, cannot qualify as a true scientific theory unless it were possible to falsify it through 
observations contrary to predictions; that is, unless it were possible to acquire observations 
that could be in conflict with the theory. Without the possibility of falsification, the hypotheses 
were pseudo-science and not a true scientific theory. Once falsified, the theory could be 
modified to agree with observations or discarded. And so we came to recognize that a scientific 
theory, a product of induction, is only valid as long as it is not contradicted by physical 
observations. A mathematical theory, on the other hand, which arises from deductive 
reasoning (the establishment of axioms and then using mathematical logic to prove the 
consequences of those axioms) is permanent and unfailing, and does not change. Thus, correct 
mathematical proofs last forever; scientific proofs last only until they are contradicted by 
observations. Even Popper was eventually criticized as being too objective. It was said that the 
philosophy of objectivism was not how real science was done. Real observations of the physical 
universe account for the statistical nature of events, and Popper’s principles, at least early 
versions of them, did not use statistical interpretations.  
    As the 20th century progressed, we came across the likes of extraordinary scientists who 
made inductive contributions to what we know about the physical universe: Rene de Broglie 
formalized the relationship between electromagnetic waves and momenta a decade before 
these relationships were confirmed experimentally. Also, Paul Dirac, purely on the basis of 
mathematical calculations, discovered the existence of anti-matter, a physical reality that was 
only observed experimentally a dozen years after his announcement. This led Sir Arthur 
Eddington, who confirmed Einstein’s theory of relativity through astronomical observations 
long after they had been predicted by the theory of relativity, to comment, “the 
experimentalist will be surprised to learn that we will not accept experimental data unless it 
is confirmed by theory”. This was clearly opposite to the views of Hume and others. More 
recently, the physicist and probabilist, Edwin T. Jaynes, put forth the notion that all science is 
inductive, that an inductive process must be used, even when one wishes to design 
experiments, or to assimilate and mine data, or to explain the causes of events observed in 
existing physical systems.  
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■ The Classical Pillars of Science 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4 

〈Fig 4〉 Thus, after millennia of debate by the greatest minds of human history, two 
avenues to scientific knowledge emerged: 1) observations, experimental measurements, 
information gained by the human senses, guided by instruments, and 2) theory, inductive 
hypotheses often framed in mathematical language. Observation and theory are thus, the two 
classical pillars of science. According to the Oxford Dictionary, the scientific method is “a 
method of procedure that has characterized natural science since the 17th century, consisting 
in systematic observation, measurement, experience and experiment and the formulation, 
testing, and modification of hypotheses.”  
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■ Is There a Third Pillar? 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 5 

〈Fig 5〉 Is there a third pillar? Is there a new avenue to gain scientific knowledge? The 
answer, in my mind, and in the minds of most contemporary scientists and engineers, is very 
clearly “Yes.” It is the new discipline of computational science: the use of computers and 
models, computational algorithms, and computing devices to fashion models of how the 
physical universe behaves to predict the future, and also reconstruct the past. In little more 
than a half century of the two to four million years of human history or, on a historic scale, in 
the blink of an eye, the entire scientific landscape has changed forever. Computational science 
is the most important scientific event in human history. It has transformed forever the way 
scientific discoveries are made and how engineering applications are performed. It lies at the 
intersection of mathematics, computer science, and the core disciplines of science and 
engineering. Mathematics, because it is the language in which scientific theory is written, as 
well as the language to transcribe and transfer information on observations, is an 
indispensable component of the classical pillars of science. Mathematics is also the language 
in which the mathematical theories of science are reconstituted and put in a form that can be 
processed by digital computers. Computer science is the body of scientific knowledge and 
technology designed to understand and build computing devices, and to develop the language 
and means to communicate with computing machines. Of course, the traditional core 
disciplines of science and engineering must now be reviewed and reconstituted because what 
had once been out of reach by traditional science is now well within reach because of the 
advent of powerful new tools and approaches afforded by computational science.  
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    Computational science, I submit, is the Third Pillar of Science. It embodies the development 
of computer models, computer simulations, data retrieval and mining, processing of large data 
sets, and explicit advances in computing technology. It enables scientific discovery and 
advances never thought possible before—in manufacturing, medicine, surgery, materials, 
climate science, geophysics, in understanding natural hazards, and many other areas of 
technology and scientific study. 
 
■ Mechanics and Computational Mechanics 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 6 

〈Fig 6〉 My introduction to this subject began by studying mechanics and computational 
mechanics, the scientific discipline concerned with the study of the motion of bodies under the 
action of forces; so it embraces solid mechanics, fluid mechanics, but now also includes 
materials science, the motion of electrons, quantum mechanics, and statistical mechanics. In 
my mind, with a clear, broad definition of mechanics, it is indistinguishable from 
computational science.  
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■ What can CSE do that classical science cannot? 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 7 

〈Fig 7〉 What can computational science and engineering do that classical science cannot? 
It can look into the past with inverse analysis, to determine what past events caused observed 
phenomena. It can explore the effects of thousands of scenarios for or in lieu of actual 
experiments. It can be used to study events beyond the reach of expanding the boundaries of 
contemporary experimental science, such as in drug design, space exploration, climate change, 
and natural disasters. It can even explore the consequences of a breakdown in models and 
theories. It can optimize procedures for the design of projects and systems. 
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■ The Anatomy of a Computer Simulations 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 8 

〈Fig 8〉 Let us now dissect the anatomy of a computer simulation. Exactly what is 
involved in applying the tools of computational science to acquire knowledge or to understand 
the behavior of engineered systems? First, there is the mathematical model, which is a 
collection of mathematical constructions that translates both inductive hypotheses about the 
functions and behavior of the physical system, as well as observations of the response of the 
system to various inputs within a mathematical context. Second, there is the computational 
model, a corrupted discretization of the mathematical model rendering into a form that can be 
processed by computing devices. Third, there are mathematical and computational algorithms 
that are step-by-step procedures and formulations used for calculation, data processing, and 
automated reasoning. Fourth, there is scientific software that delivers machine-readable 
instructions that direct computers to perform specific functions. Then, there is the computer, 
the device that performs logical operations with quantities represented by digits usually in 
binary number systems. Finally, there is the output data, which must be processed and 
interpreted and used in predictions or designs or in decision making. 
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■ The Anatomy of a Computer Simulation 2 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 9 

〈Fig 9〉 A good example of a computer model of a physical phenomenon is that of flow of 
water through a channel. One could assume that the system is governed by the fundamental 
laws of conservation of mass, and the principles of conservation and balance of linear and 
angular momentum. Assuming the laws governing the motion of viscous fluids, one chooses 
the renowned Navier Stokes equations as a mathematical model of the physical phenomenon. 
For this case, let us select a quantity u for the velocity of the fluid,  as its density,  its 
viscosity, a physical parameter, p the pressure, and b the body force, such as might be 
represented by the weight of the fluid or its buoyancy. This is a mathematical characterization 
of a theory, embodied in the principle of balance of momentum. To render it into a form that 
can be computed, we discretize it: we replace derivatives of functions with discrete 
approximations to produce a computational model, and then we develop a code, a computer 
program, and implement the solving of the computational model on a computer. This produces 
a discrete characterization of the solution of the model that depicts the fluid flow we originally 
set out to simulate. There is another step between the production of the computed results and 
their use, and that is to develop, interpret, and visualize the solution, and to use one’s 
knowledge to infer the behavior of the system. So, once again, the methods and techniques of 
modern computer science enter the picture.  
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■ The Greatest Modeling Methods and Algorithms of Modern History Made Possible by 
Computers 

 
 
 
 
 
 
 
 
 
 
 
 

Fig 10 

〈Fig 10〉 What are the methods and algorithms of modern history that have made these 
advances possible? Some modern computational methods would not have existed without the 
advent of computers. The first I will mention is the finite element method. Generally regarded 
as having been created in the 1950s, with some vestiges of it going back much further, the 
finite element method continues to be developed and used extensively today. It is an ingenious 
method in which a complex physical problem is divided into small pieces, its finite elements, 
and the laws of mechanics are applied to each individual piece. These are then packed 
together to form complete models of large, complex systems. The finite element method has 
impacted virtually every area of science and technology. I had the good fortune to play a role 
during its early years and to develop some of the earliest computer programs that 
implemented the method for the analysis of complex aerospace and aeronautical systems. 
That was in the early 1960’s. Later, in the 1970’s, I authored one of the earliest books on its 
mathematical foundations, a subject which has become a rich and active branch of applied and 
computational mathematics, and is taught worldwide.  
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■ The Greatest Modeling Methods and Algorithms of Modern History Made Possible by 
Computers 2 

 
 
 
 
 
 
 
 
 
 
 

Fig 11 

〈Fig 11〉 Basically, the finite element method enabled the engineering and scientific 
community to solve partial differential equations on geometrically complex domains, and it is 
mathematically rigorous. Not only did the ability to solve partial differential equations create 
a huge impact on modern mathematics, but it also revolutionized engineering. Other methods 
of statistics and statistical sampling are enabled by advances in computers and are 
manifested in the powerful new algorithms such as the Markov Chain Monte Carlo method, 
the use of molecular dynamics to the study of chemistry, the study of statistical methods, 
stochastic systems, and so on. These fields would never have existed had it not been for the 
advances of digital computing and computational mathematics in the 1980s and 1990s. Now 
these statistical sampling methods are becoming fundamental tools in many areas of science 
and engineering. Molecular dynamics simulations are used in biology, in the understanding of 
the behavior of viruses and bacteria, in the development of nanoparticles for drug delivery, 
and in engineering new materials. These are computational algorithms that model nature at 
an atomistic or molecular level. They have had a tremendous impact on how we understand, 
teach, and use modern biology, chemistry, and physics. Next is the Density Functional Theory, 
a theory of quantum systems that led to the development of a revolutionary reformulation of 
quantum mechanics that brought a host of new methods to solve problems at the electronic 
level and to the study of first principles in the behavior of materials and physical systems. 
More recently, several new, very fast algorithms have been designed that enable the solution 
of very large problems with billions of unknowns in a fraction of the time of the methodologies 
and algorithms that were available back in the 1980s and 1990s. These have led to huge 
advances in such fields as seismology that help find and exploit vital reserves in oil and gas. 
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■ Are Advances in Computational Science Strictly Due to Advances in the Size and 
Speed of Computers? 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 12 

〈Fig 12〉 In viewing these scientific advances brought about by computing, one may ask: 
can all of these be attributed strictly to advances in the size and speed of computers? I must 
register emphatically a resounding “No” to this question. Many, many counterexamples can be 
registered. The graph shown indicates that if one plots the effective gigaflops on a computing 
device against the calendar year in which advances in computer speeds were made, for 
example, in proportion to the number of semiconductors per computer chip, this corresponding 
increase is roughly linear over the last 30 years, a well-known and documented fact. When one 
factors in great advances in algorithms, many of which have already been mentioned, the 
effective size, processing speed and complexity of problems, have increased by four orders of 
magnitude. Computers alone have contributed to only a portion of the advances in 
computational science in recent years.  
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■ Imperfect Paths to Knowledge 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 13 

〈Fig 13〉 In modern computational science, every phase of the scientific method involves 
uncertainty. It is in observations, in data characterizing the models, and in the models 
themselves, since they are only mathematical abstractions of reality. There is also uncertainty 
due to the discretization of the model which casts it into a form that can be processed by a 
computer. The management of all these uncertainties and their quantification and control, 
using modern methods of statistics and probability, are now at the cutting edge of research in 
computational science. While the presence of uncertainty in scientific predictions has been 
recognized for many years, it has only been in recent times that modern algorithms, methods, 
and computing machines reached the level of development at which significant advances can 
be made to manage these uncertainties, and to control and quantify them. This is a subject I 
have been working on steadily over the past decade, and I believe we are close to developing a 
full and rigorous theory for uncertainty quantification and for creating the foundations of 
what is called “predictive science.” 
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■ Error Estimation and Adaptivity 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 14 

〈Fig 14〉 And, we now turn to an area related to my earlier comments on the fallibility of 
computers, models, and even scientific theories in predicting the future. In solving complex 
problems, have we developed over the past decades any way to estimate these errors, to 
reduce them, and to control them? The answer is “Yes,” and, in fact, the whole subject of error 
estimations and adaptivity is a huge and important area in computational science and one in 
which I have had the privilege to be involved. The general question is this: if we acknowledge 
that theories, models, and computer discretizations and observations are in error, how can one 
calculate approximations of error and correct them? The general answer that I have used in 
my work is to compute what is called a residual. A residual is leftover information that results 
when erroneous answers do not satisfy the equations governing the computational model. 
Then one needs to adjust the parameters of the model so that one can prove mathematically 
that the residual is reduced. This is called adaptivity, and adapting the discretizations, or 
adapting the model to reduce error, is a fundamental concept that has permeated much of the 
modern work in computational science, including my own. 
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■ The Last Word: The Path to Truth 
 
 
 
 
 
 
 
 
 
 
 

Fig 15 

〈Fig 15〉 The philosopher Hans Reichenbach states in his book The Rise of Scientific 
Philosophy that, “If error is corrected whenever it is recognized as such, the path to error is 
the path to truth.” This is the underlying philosophy of adaptive computational methods. 
 
■ Examples of CS&E Research at ICES 
 
 
 
 
 
 
 
 
 
 
 

Fig 16 

〈Fig 16〉 I would now like to list a few examples of modern applications of computational 
science that have been performed at my institute over the last half decade.  
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■ Global Mantle Convection Modeling 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 17 

〈Fig 17〉 This example is a remarkable calculation of the cooling of the earth’s core and the 
creation of the earth’s mantle, a spherical shell exterior to the core modeled as a viscous 
creeping incompressible, non-Newtonian fluid. The model involves the fundamental equations 
of balance of momentum, mass, and energy. It is this model that was featured in Science 
Magazine and, indeed, was on the cover of Science in 2010. It pictures a model of around 300 
million hexahedral finite elements, around 1.2 billion degrees of freedom, and solved on 
around 5,000-10,000 processor cores of the Ranger super-computer system. The calculation 
was done about three years ago by a team at ICES Center for Computational Geosciences and 
Optimization, led by Omar Ghattas, and took on the order of 100,000 time steps.  
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■ Mantle Convection Simulation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 18 

〈Fig 18〉 The movie shows that the Earth’s mantle arises from plumes of warm rock 
flowing buoyantly from the mantle core. The plumes, called upwellings, flow along the earth’s 
crust upward. They subsequently cool and break down back into the core of the earth. These 
are called downwellings. The round trip of these convection cells is on the order of a few 
hundred million years, with a typical flow velocity of a few centimeters per year. This 
phenomena is thought to drive plate motion to the earth’s surface in a very high Reynold’s 
number flow, which is very unstable and requires 10 kilometers of resolution of the sharp 
thermal fronts and even finer one kilometer resolution at the plate boundaries. This 
resolution would lead to an intractable computation since the earth has an excess of around 
one trillion cubic kilometers. Adaptive mesh refinement reduces the number of elements 
needed by a factor of 5,000. The movie also shows that large thermal gradient regions and 
regions of large viscosity promote dynamically adaptive meshing to control the resolution of 
important physical details predicted in the model. 
    Ultimately, predicting the behavior of the complete dynamical system responsible for plate 
motion and earthquakes, the creation of volcanoes, mountain ranges, and long-term sea levels 
will fill enormous gaps in our knowledge of questions that are basic to principles of driving 
and resisting forces of plate tectonics and what is the energy balance of the planet as a whole. 
The understanding of mantle convection has been designated as one of the Ten Grand 
Research Questions in Earth science. We are building these models to help answer these 
questions. 
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■ Hurricane Storm Surge and Oil Spill Modeling in the Gulf of Mexico 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 19 

 
■ Hurricane Storm Surge and Oil Spill Modeling Using the ADCIRC Code 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 20 
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■ Hurricane Storm Surge and Oil Spill Modeling – Hurricane Katrina and the 
Deepwater Horizon 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 21 

〈Fig 19-21〉  Next, we show the hydrology induced by hurricanes and the prediction of so-
called storm surges. This calculation was also done in 2010 by the ICES Computational 
Hydraulics Group led by Clint Dawson. The figure shows wind vectors and storm surge 
contours during Hurricane Katrina in 2005 that caused extensive flooding in southern 
Louisiana (Fig 19). The topography and bathymetry is generated using satellite images of the 
coast and sea-floor topography. On the right in Fig 21, we show the hypothetical transport of 
an oil spill if it had occurred during the storm. The coastal flooding is simulated by a finite 
element code called ADCIRC on a mesh of around ten million finite elements. The oil spill 
transport is represented by ten million Lagrangian particles. Coastal flooding is simulated 
with a one-second time-step over a span of seven days. It is solved using a fourth-order Runge-
Kutta scheme and interpolating the computer currents over the same span. Had an oil spill 
been active during the landfall of Hurricane Katrina, oil would have been pushed further 
offshore and very near metropolitan New Orleans. With such calculations, we hope to quantify 
the hazards associated with coastal flooding during extreme, natural, and manmade events. 
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■ Nano-Manufacturing – Engineering at the Atomic Scale 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 22 

 
■ Nano-Manufacturing – Etch Barriers in Step and Flash Imprint Lithography 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 23 
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〈Fig 22-23〉  Computer modeling and simulation allows one to predict events and design 
engineering systems at scales perceptible only by electron microscopy. These types of models 
have been developed by my Multi-Scale Modeling Group at ICES and are used to simulate 
manufacturing objects at nanometer scales, ranging from nanoparticles for drug delivery to 
manufacturing today’s semiconductor devices. It is known that the optimal speed of 
contemporary super computers depends upon the number of semiconductors that can be 
placed on a computer chip. So the grand challenge of modern chip design is to develop 
processes to produce smaller and smaller semiconductors – but this can only be done with 
careful designs and process monitoring of the manufacturing process.  
 
    Shown in the figure 22 is an example of a nanomanufactuing process at the nanoscale 
(which concerns subjects sized at one billionth of a meter, or 1000th the width of a human 
hair). The process, called Step and Flash Imprint Lithography, works by depositing a 
photocurable acrylate solution on a wafer that is exposed to ultra-violet light through a quartz 
template designed to imprint geometric features of tiny semiconductor components. The 
template and device involved in the process run upwards of $20 million and must be designed 
with precision to produce components of nanodimensions with almost perfect geometric 
fidelity.  
    The process of producing the critical etch barriers, shown, is modeled using a huge 
computational model of the polymer material (Fig 23). The model is used to define the shape 
of key semiconductor components.  
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■ Nano-Manufacturing – One Realization of the Polymerization Process 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 24 

 
■ Nano-Manufacturing – Multi-Processor Computations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 25 
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■ Nano-Manufacturing – Shrinkage Adaptive Step 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 26 

〈Fig 24-26〉  Computer generated molecular structures of the etch barrier are shown, 
attained using a Monte Carlo algorithm that employs kinetic chemical reaction rates to 
determine the most probable molecular situations (Fig 24). These structures are then 
introduced into a molecular dynamics model to compute the deformed shapes of the polymer 
barriers, as in the three-million-degree-of-freedom model shown (Fig 25).  
 
    A remarkable aspect of this calculation is that multi-scale modeling was used to control 
modeling error, resulting in hybrid models of the type shown where part of the structure was 
modeled at a molecular level and part at a macro-scale-continuous level (Fig 26). The resulting 
predictions helped optimize the design of the process and minimize flaws in the semiconductor 
components. This is an example of adaptive modeling that we developed to control error in 
predictions of component behavior.  
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■ Cardiovascular Modeling – Reconstruction of a 3D Anatomically Accurate Heart Mitral 
Valve 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 27 

〈Fig 27〉 Next is a very interesting simulation of cardiovascular phenomena developed at 
the ICES Cardiovascular Simulation Center under the direction of Michael Sacks. This 
computational model is a reconstruction of an anatomically-accurate heart mitral valve. It 
was developed from a Micro CT image of around 39.46 microns resolution, with the perfect 
voxel resolution in around 1,014 slices. It shows the interior leaflet in red, the posterior leaflet 
in green, the chordae tendineaes and papillary muscles in yellow of the heart valve, with half 
a million nodes and around two million tetrahedral elements. The simplified model depicts the 
motion of the mitral valve this time using around 6,500 shell elements plus hexahedral 
elements for the mitral valve chordae tendineaes. The calculation was solved on 24 cores.  
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■ Cardiovascular Modeling – Mitral Valve Simulation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 28 

〈Fig 28〉 Here we see modeling and closure of the mitral valve due to trans-valvuler 
pressure–loading and ending with the thorough validation of the computational model using 
in vitro experimental data. 
 
■ Prostate Cancer Research – A DDDAS Model – Cyberinfrastructure and Work Flow 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 29 
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■ Prostate Cancer Research – A DDDAS Model – Imaging to Mesh Generation Pipeline 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 30 

 
■ Prostate Cancer Research – A DDDAS Model – Patient Specific Calibration 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 31 
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■ Prostate Cancer Research – A DDDAS Model –Treatment Process 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 32 

〈Fig 29-32〉  Here we see a dynamic data-driven application system designed to treat 
prostate cancer (Fig 29). The canine patient was placed in an MRI-device and an MRI image 
was taken of the infected prostate to be sent, over a high-bandwidth network, to the 
computational arena at ICES where a bioheat transfer model of the 3-D infected gland is 
made using finite elements and a model of bioheat transfer (Fig 30). The finite element mesh 
of the prostate shows a catheter inserted to terminate in the vicinity of the cancer cells. A 
laser was used to increase temperature in this area. Computational models of cell damage, 
heat shock protein, and thermal ablation were employed (Fig 31). By modeling the entire 
physical event, it is possible to minimize damage to healthy cells and maximize cancer cells in 
the vicinity of the catheter. The computational model enabled an adaptive control of the power 
of the laser, the resulting temperatures, the thermal environment supplied to the catheter, 
and the placement of the catheter in real time during this process. Next, very good agreement 
was obtained between the computational model and the experimental data, validating the 
models used. This study was conducted by my Multi-Scale Modeling Group at ICES. 
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■ Drug Design – SIV/HIV Envelope Interacting with a Candidate Inhibitor 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 33 

〈Fig 33〉 In the next example, we show results obtained by Chandrajit Bajaj’s group in the 
Computational Visualization Center at ICES on electrostatic potential computations for a 
target-spiked protein GP120 on the envelope of SIV HIV simian immunodeficiency viruses 
interacting with a candidate inhibitory protein NIH45-46. HIV uses GP120 as an important 
signaling mechanism to gain simian-human immune T-cell entry. In the movie, the 
electrostatic potentials are computed with the Poisson-Boltzman equations initially using 
electron tomography for fine atomistic structure modeling of the GP120. Blue denotes positive 
potentials, red denotes negative potentials, and the cancelation of positive and negative 
potentials helps visualize the electrostatics complimentarity of the target and inhibitor and 
get the binding affinity. 
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■ HIV RT Synthesizes DNA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 34 

〈Fig 34〉 As a final example, we use computational methods to explore the secrets of life. 
Here, we display a minimum free-energy pathway for the conformational transition of the HIV 
reverse transcriptase obtained at ICES’s Center for Computational Life Sciences and Biology 
directed by Ron Elber. HIV RT is a DNA polymerase with the task of synthesizing a new DNA 
molecule according to a template. The conformal transition of the protein when closing of a 
nucleotide is displayed. The transition selects the correct nucleotide to be added to the DNA. 
It is not completed successfully for the wrong substrate. Here, we were able to pinpoint the 
selection and reproduction quantitatively for the rate at which the protein changes its 
conformation to within milliseconds. The size of the model is 135,000 atoms. To compute the 
free-energy profile required around 10 billion molecular-dynamic steps with 10 femto-seconds 
for each time step. It was solved on the Lonestar computer at the Texas Advanced Computing 
Center running on 100 cores for over a month. What we see in the movie, is a close up of the 
protein active site and the way the protein changes its conformation while closing on the 
substrate. The group in purple is the nucleotide substrate to be added to the DNA in green. 
The orange spheres are magnesium ions necessary for the reaction, the yellow moving groups 
are positively-charged life sign side chains closing on a negatively charged nucleotide and 
getting it ready for chemical processing. What we hope to learn is how the protein selects the 
correct nucleotide to obtain an accurate copy of the original DNA. A conformational transition 
locks only on the correct substrate and the simulation makes it possible to quantify the 
locking mechanism that determines the rate of reaction in binding energy and the 
contribution to the overall precision of the enzyme. Some believe that this model can teach us 
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the secrets of life with regard to the behavior of DNA and transport mechanisms. Membranes 
separate inside and outside cells, but nevertheless transportation across membranes is 
necessary to supply nutrients and eliminate waste products. One transport mechanism is 
passive, directly through the membrane, without the assistance of trans membrane proteins. 
Passive transport is also relevant for drug delivery. Here we consider the transport of a single 
amino acid tryptophan across a DOPC membrane as a model for permeants of moderate size. 
 
■ Acknowledgements 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 35 

〈Fig 35〉 The examples I presented were kindly provided by my collaborators and 
colleagues and my group at ICES.  
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■ Summary and Conclusions 
 
 
 
 
 
 
 
 
 
 
 

Fig 36 

〈Fig 36〉 We are gradually coming to the realization that this Third Pillar will inevitably 
change the way we educate the scientists and engineers of the future, how we organize and 
perform research, and how we view knowledge and acquire it. The traditional compartments 
of knowledge reflected in our universities and in many industries is now seen to be artificial, 
not designed for interdisciplinary activities that are now made relevant and possible by the 
rise of computational science. The old systems will change or be lost in perpetuity.  
    What you and your children and your grandchildren will learn is that computational science 
will enable the study and understanding of things that have eluded scientists and engineers 
from the beginning. Can you study, with precision, events that happened centuries in past? 
Can you understand the initial and mechanical conditions that lead to earthquakes and 
tsunamis? Can you understand the stochastic nature of physical systems and have long-range 
predictions of our climate and our weather? Can you understand the nature of subatomic 
particles, of electrons, and how they form new materials? What about biological systems, such 
as the design and manipulation of new drugs, understanding diseases, the delivery of drugs at 
scales that cannot be perceived with the human senses? Can you model and understand the 
functions of the human body, the cardiovascular system, cures for cancer, or how to collect, 
store, process, and use the enormous amounts of data required to map out the functions of 
individual human bodies? Computational science has enabled all of these things to be lifted 
from the level of dreams and fiction and they are destined to become true accomplishments of 
science and technology in the future. 
 

■ This report can be viewed in the Honda Foundation’s website. 
You may not use the proceedings for the purposes other than personal use without 
the express written consent of The Honda Foundation. 
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